57 research outputs found

    BIODEGRADABLE MEDICAL DEVICE HAVING AN ADJUSTABLE DEGRADATION RATE AND METHODS OF MAKING THE SAME

    Get PDF
    Disclosed herein are biodegradable medical devices comprising biodegradable material (e.g., magnesium-calcium alloys) having an adjustable rate of degradation that can be used in various applications, including, but not limited to, drug delivery applications, cardiovascular applications, and orthopedic applications to make biodegradable and biocompatible devices. Also disclosed herein are methods of making biodegradable medical devices comprising biodegradable materials by using, for instance, hybrid dry cutting/hydrostatic burnishing

    A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water

    Get PDF
    A building envelope serves as a thermal barrier and plays an important role in determining the amount of energy used to achieve a comfortable indoor environment. Conventionally, it is constructed and treated as a passive component in a building thermal energy system. In this article, a novel, mini-tube capillary-network embedded and thermal-water activated building envelope is proposed to turn the passive component into active, therefore broaden the direct utilization of low-grade thermal energy in buildings. With this proposed approach, low-grade thermal water at a medium temperature close to the ambient environment can be potentially utilized to either counterbalance the thermal load or indirectly heat and cool the space. With the revealing of the idea, effects of water temperature and flow rate on the envelope’s thermal performance are investigated using a transient model. The results indicate that the thermo-activated wall can be effective in stabilizing the internal surface temperature, offsetting the heat gain, and supplying cooling energy to the space in summer. Utilization of the innovation should take the cost of total energy, energy benefit and efficiency into consideration. This article illustrates how low-grade energy can be actively used as a means for achieving net-zero energy buildings

    A Strategy to Optimize Recovery in Orthopedic Sports Injuries

    Get PDF
    An important goal for treatment of sports injuries is to have as short a recovery time as possible. The critical problem with current orthopedic implants is that they are designed to be permanent and have a high complication rate (15%) that often requires removal and replacement with a second surgery; and subsequently a second rehabilitation cycle. This study was designed to test the feasibility of having a device that could provide the needed mechanical properties, while promoting healing, for a specified amount of time and then degrade away, to shorten the recovery time. The specific strategy was to create a surface layer on a degradable metal alloy with a controllable degradation rate. Previous studies have shown the feasibility of using surface treatments to alter the surface integrity (i.e., topography, microhardness, and residual stress) leading to increased fatigue strength and a decreased degradation rate. This study was an extension of these previous studies to look at the changes in surface integrity and mechanical properties initially as well as the degradation over time for two surface treatments (shot peening and burnishing). Although the treatments improved initial properties and the burnishing treatment slowed degradation rate, the faster degradation of the base material in vitro (compared to previous studies) probably reduced the overall impact. Therefore although the study helped support the feasibility of this approach by showing the ability of the surface treatment to modify surface integrity, initial mechanical properties, and degradation rate; the degradation rate of the base material used needs to be slower and/or the surface treatment needs to create a bigger change in the degradation rate. Further it ultimately needs to be shown that the surface treatment can produce a material that will allow orthopedic devices to meet the required clinical design constraints in vivo

    Machining of biocompatible materials: Recent advances

    Get PDF
    Machining of biocompatible materials is facing the fundamental challenges due to the specific material properties as well as the application requirements. Firstly, this paper presents a review of various materials which the medical industry needs to machine, then comments on the advances in the understanding of their specific cutting mechanisms. Finally it reviews the machining processes that the industry employs for different applications. This highlights the specific functional requirements that need to be considered when machining biocompatible materials and the associated machines and tooling. An analysis of the scientific and engineering challenges and opportunities related to this topic are presented

    Comparison of proteomic landscape of extracellular vesicles in pleural effusions isolated by three strategies

    Get PDF
    Extracellular vesicles (EVs) derived from pleural effusion (PE) is emerging as disease biomarkers. However, the methods for isolation of EVs from PE (pEVs) were rarely studied. In our study, three methods for isolating pEVs of lung cancer patients were compared, including ultracentrifugation (UC), a combination of UC and size exclusion chromatography (UC-SEC) and a combination of UC and density gradient ultracentrifugation (UC-DGU). The subpopulation of pEVs was identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Western blotting (WB) and nano-flow cytometry (nFCM). Additionally, the proteomic landscape of pEVs was analyzed by Label-free proteomics. The results showed that, compared with UC and UC-DGU, the UC-SEC method separated pEVs with the highest purity. In the proteomic analysis, on average, 1595 proteins were identified in the pEVs isolated by UC-SEC, much more than pEVs isolated by UC (1222) or UC-DGU (807). Furthermore, approximately 90% of identified proteins in each method were found in the EVs public database ExoCarta. Consistent with this, GO annotation indicated that the core proteins identified in each method were mainly enriched in “extracellular exosome.” Many of the top 100 proteins with high expression in each method were suggested as protein markers to validate the presence of EVs in the MISEV2018 guidelines. In addition, combined with lung tissue-specific proteins and vesicular membrane proteins, we screened out and validated several novel protein markers (CD11C, HLA DPA1 and HLA DRB1), which were enriched in pEVs rather than in plasma EVs. In conclusion, our study shows that the method of UC-SEC could significantly improve the purity of EVs and the performance of mass spectrometry-based proteomic profiling in analyzing pEVs. The exosomal proteins CD11C, HLA DPA1 and HLA DRB1 may act as potential markers of pEVs. The proteomic analysis of pEVs provides important information and new ideas for studying diseases complicated with PE

    Finite element analysis of superfinish hard turning

    No full text
    Mechanical properties of the work material are required inputs for any numerical and analytical modeling to predict machining performance. Obtaining mechanical properties of work materials in machining and developing practical 3-D finite element analysis (FEA) models have been identified as two important problems for the future computational mechanics of machining processes. As such, development of a method to estimate mechanical properties of the work material in machining for finite element analysis of a machining process has scientific as well as economic importance. Based on the literature review, a satisfactory method to obtain mechanical properties of the work material in machining has not been available. Cutting tests coupled with cutting models are usually used to estimate average flow stress of the work material. This method can only obtain flow stresses/strains in plastic deformation in a small range of strain, strain rate, and temperature. However, for accurate FEA of machining, mechanical properties in both elastic and plastic deformations for a much broader range are required. In this study, an approach using tensile tests at elevated temperatures has been proposed to estimate mechanical properties for both elastic and plastic deformations in a broad range of strain, strain rate, and temperature in machining. The proposed method has been applied and verified for hard turning AISI 52100 steel (62 HRC). Flow stresses at high strain rates in machining processes can be estimated by making use of the concept of velocity-modified temperature. A practical 3D explicit FEA model has been developed and applied to analyze the superfinish hard turning process using the experimentally determined material properties. A friction model, which decouples sticking and sliding regions, has been established for the tool-chip interface. Flow stress data from tensile tests and cutting experiments are consistent with regard to the velocity-modified temperature. Cutting forces and cutting temperatures from the simulation and the measurement agree. Chip flow and residual stresses were also predicted. FEA sensitivity to the magnitudes of material failure criterion and flow stress was performed and studied

    BIODEGRADABLE MEDICAL DEVICE HAVING AN ADJUSTABLE DEGRADATION RATE AND METHODS OF MAKING THE SAME

    Get PDF
    Disclosed herein are biodegradable medical devices comprising biodegradable material (e.g., magnesium-calcium alloys) having an adjustable rate of degradation that can be used in various applications, including, but not limited to, drug delivery applications, cardiovascular applications, and orthopedic applications to make biodegradable and biocompatible devices. Also disclosed herein are methods of making biodegradable medical devices comprising biodegradable materials by using, for instance, hybrid dry cutting/hydrostatic burnishing

    A Novel Strategy for Minimum Attribute Reduction Based on Rough Set Theory and Fish Swarm Algorithm

    No full text
    For data mining, reducing the unnecessary redundant attributes which was known as attribute reduction (AR), in particular, reducts with minimal cardinality, is an important preprocessing step. In the paper, by a coding method of combination subset of attributes set, a novel search strategy for minimal attribute reduction based on rough set theory (RST) and fish swarm algorithm (FSA) is proposed. The method identifies the core attributes by discernibility matrix firstly and all the subsets of noncore attribute sets with the same cardinality were encoded into integers as the individuals of FSA. Then, the evolutionary direction of the individual is limited to a certain extent by the coding method. The fitness function of an individual is defined based on the attribute dependency of RST, and FSA was used to find the optimal set of reducts. In each loop, if the maximum attribute dependency and the attribute dependency of condition attribute set are equal, then the algorithm terminates, otherwise adding a single attribute to the next loop. Some well-known datasets from UCI were selected to verify this method. The experimental results show that the proposed method searches the minimal attribute reduction set effectively and it has the excellent global search ability

    A thermo-activated wall for load reduction and supplementary cooling with free to low-cost thermal water

    Get PDF
    A building envelope serves as a thermal barrier and plays an important role in determining the amount of energy used to achieve a comfortable indoor environment. Conventionally, it is constructed and treated as a passive component in a building thermal energy system. In this article, a novel, mini-tube capillary-network embedded and thermal-water activated building envelope is proposed to turn the passive component into active, therefore broaden the direct utilization of low-grade thermal energy in buildings. With this proposed approach, low-grade thermal water at a medium temperature close to the ambient environment can be potentially utilized to either counterbalance the thermal load or indirectly heat and cool the space. With the revealing of the idea, effects of water temperature and flow rate on the envelope’s thermal performance are investigated using a transient model. The results indicate that the thermo-activated wall can be effective in stabilizing the internal surface temperature, offsetting the heat gain, and supplying cooling energy to the space in summer. Utilization of the innovation should take the cost of total energy, energy benefit and efficiency into consideration. This article illustrates how low-grade energy can be actively used as a means for achieving net-zero energy buildings
    • …
    corecore